
ENCS211 – EXP10

1

Birzeit University
Faculty of Information Technology

Computer Systems Dept.

Digital Electronics And Computer Organization Lab
ENCS 211

Experiment No. 10

Introduction to The DEBUG Program

Submitted by:

Elias Hazboun No. 1081518

Iyad Mousa No. 1081234

Instructor's Name: Mr. Abdulsalam Sayyad

Section: 4

Date: 7 / 4 / 2010

ENCS211 – EXP10

2

 Procedure and Discussion :

To run the DEBUG program on a vista machine, we clicked on start, then run, and we typed
“cmd” and pressed enter. A console window appeared and we entered “DEBUG”.

1. Immediate Operands

Activities 1.1 & 1.2: We first entered the address of the offset which is 100h, then we
entered the specified instructions, and pressed ‘U’ for the program to un-assemble the
instructions into machine code. See table below for results and figure 1 for illustration.

Assembly code Machine Code
MOV AX, 2864 B86428
ADD AX, 3749 054937
MOV BX, AX 89C3
SUB BX, 2805 81EB0528
NOP 90

Activity 1.3: We can calculate how many bytes each instruction needs from its length:

Assembly code Number of bytes
MOV AX, 2864 3
ADD AX, 3749 3
MOV BX, AX 2
SUB BX, 2805 4
NOP 1

Figure 1

ENCS211 – EXP10

3

Activity 1.4: Intel’s x86 architecture uses little endian to store data. That is 2864 is stored at the
101h offset as 64 in 101h and 28 in 102h

Activity 1.5: The contents of the registers are shown using the command ‘R’. See figure 2.

Register Content
CS 0B0C
IP 0100
AX 0000
BX 0000

Activity 1.6:

Register
MOV AX,
2864

ADD AX,
3749

MOV BX, AX
SUB BX,
2805

CS 0B0C 0B0C 0B0C 0B0C
IP 0103 0106 0108 010C
AX 2864 5FAD 5FAD 5FAD
BX 0000 0000 5FAD 37A8

Activity 1.7: To execute the program we use the command ‘T’, which runs the program step by
step- instruction by instruction, with each instruction showing us the contents of the registers.
See figure 3.

Register MOV AX, 2864 ADD AX, 3749 MOV BX, AX SUB BX, 2805

CS 0B0C 0B0C 0B0C 0B0C
IP 0103 0106 0108 010C
AX 2864 5FAD 5FAD 5FAD
BX 0000 0000 5FAD 37A8

Figure 2

ENCS211 – EXP10

4

Activity 1.8: Since the IP stands for the Instruction Pointer, it is only fair that its contents are
the instruction currently in execution; hence its contents should change with each instruction.

Activity 1.9: The offset is 0103 (refer to figure 1), while the physical address = IP + CS*10 =
0103 + B0C0 = B1C3

2. Immediate Operands

Activities 2.1 & 2.2: We entered the data specified at the offset memory location 200h using
the command ‘E’, then we entered the program instructions at the offset memory location 100h
using also the command ‘E’. See figure 4.

Figure 3

Figure 4

ENCS211 – EXP10

5

Activity 2.3: to find the assembly code we use the command ‘U’. See figure 5.

Assembly code Machine Code
MOV AX, [0200] A10002
MOV BX, [0202] 8B1E0202
ADD BX, AX 01C3

MOV [0204], BX 891E0402
NOP 90

Activity 2.4: From figure 4, we can clearly see that the first 8 bits are ‘1’.

Activity 2.5: From figure 4, we can clearly see that the first 16 bits ar “1B”.

Activity 2.6: We first move after tracing the code. We can see that the contents of 204 are the
addition of [0200] & [0202] which are: “E951”. See figure 6

Activity 2.7: The contents of AX can be investigated using the command ‘T’, which shows
them to be: 9F1B. See figure 7

Figure 5

Figure 6

Figure 7

ENCS211 – EXP10

6

Activity 2.8: Again we use the command ‘T’ to execute the program and inspect the contents
after each instruction. See figure 8.

3. Entering assembly code in DEBUG

Activities 3.1 & 3.2: we enter the specified assembly code using the command ‘A’ at the CS
offset address 100h. Then using the command ‘T’ we executed the program step by step. See
figure 9.

MOV CL,42 MOV DL,2A ADD CL,DL

CL 42 42 6C

DL 00 2A 2A

IP 0102 0104 0106

A10002 8B1E0202 01C3 891E0402

DS:204 00 00 00 6C88

Figure 8

ENCS211 – EXP10

7

 Conclusion :

This experiment took us away from what we used to do in the digital lab; this
experiment was aimed at solidifying our understanding of how programs are executed on a
modern computer. We –for the first time- interacted with registers and RAM directly, with
commands such as ‘T’, ‘U’, ‘R’ and ‘A’, each of which has a specific purpose in the DEBUG
program. We were able to enter data and code to the data and code segments respectively and
see the results after executing the program. And we were able to convert from assembly to
machine code and vice-versa.

 Note that the machines we used a combination of windows operating system and Intel x86
processors.

Figure 9

